skip to main content


Search for: All records

Creators/Authors contains: "Readhead, A. C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Compact symmetric objects (CSOs) are jetted active galactic nuclei (AGN) with overall projected size <1 kpc. The classification was introduced to distinguish these objects from the majority of compact jetted AGN in centimeter-wavelength very long baseline interferometry observations, where the observed emission is relativistically boosted toward the observer. The original classification criteria for CSOs were (i) evidence of emission on both sides of the center of activity and (ii) overall size <1 kpc. However, some relativistically boosted objects with jet axes close to the line of sight appear symmetric and have been misclassified as CSOs, thereby undermining the CSO classification. This is because two essential CSO properties, pointed out in the original papers, have been neglected: (iii) low variability and (iv) low apparent speeds along the jets. As a first step toward creating a comprehensive catalog of “bona fide” CSOs, we identify 79 bona fide CSOs, including 15 objects claimed as confirmed CSOs here for the first time, that match the CSO selection criteria. This sample of bona fide CSOs can be used for astrophysical studies of CSOs without contamination by misclassified CSOs. We show that the fraction of CSOs in complete flux density limited AGN samples withS5GHz> 700 mJy is between (6.8 ± 1.6)% and (8.5 ± 1.8)%.

     
    more » « less
  2. ABSTRACT

    We report on the low Galactic latitude (b = 4${_{.}^{\circ}}$3) quasar 2005 + 403, the second active galactic nuclei, in which we detected a rare phenomenon of multiple imaging induced by refractive-dominated scattering. The manifestation of this propagation effect is revealed at different frequencies (≲ 8 GHz) and epochs of Very Long Baseline Array (VLBA) observations. The pattern formed by anisotropic scattering is stretched out along the line of constant Galactic latitude with a local position angle, PA ≈ 40° showing 1–2 sub-images, often on either side of the core. Analysing the multifrequency VLBA data ranging from 1.4 to 43.2 GHz, we found that both the angular size of the apparent core component and the separation between the primary and secondary core images follow a wavelength squared dependence, providing convincing evidence for a plasma scattering origin for the multiple imaging. Based on the Owens Valley Radio Observatory long-term monitoring data at 15 GHz obtained for 2005 + 403, we identified the characteristic flux density excursions occurred in 2019 April and May and attributed to an extreme scattering event (ESE) associated with the passage of a plasma lens across the line of sight. Modelling the ESE, we determined that the angular size of the screen is 0.4 mas and it drifts with the proper motion of 4.4 mas yr−1. Assuming that the scattering screen is located in the highly turbulent Cygnus region, the transverse linear size and speed of the lens with respect to the observer are 0.7 au and 37 km s−1, respectively.

     
    more » « less
  3. ABSTRACT

    The Andromeda galaxy (M 31) is our closest neighbouring spiral galaxy, making it an ideal target for studying the physics of the interstellar medium in a galaxy very similar to our own. Using new observations of M 31 at 4.76 GHz by the C-Band All-Sky Survey (C-BASS), and all available radio data at 1° resolution, we produce the integrated spectrum and put new constraints on the synchrotron spectral index and anomalous microwave emission (AME) from M 31. We use aperture photometry and spectral modelling to fit for the integrated spectrum of M 31, and subtract a comprehensive model of nearby background radio sources. The AME in M 31 is detected at 3σ significance with a peak near 30 GHz and flux density 0.27 ± 0.09 Jy. The synchrotron spectral index of M 31 is flatter than our own Galaxy at α =−0.66 ± 0.03 with no strong evidence of spectral curvature. The emissivity of AME averaged over the total emission from M 31 is lower than typical AME sources in our Galaxy, implying that AME is not uniformly distributed throughout M 31 and instead is likely confined to sub-regions – this will need to be confirmed using future higher resolution observations around 20–30 GHz.

     
    more » « less
  4. Context. Optical polarimeters are typically calibrated using measurements of stars with known and stable polarization parameters. However, there is a lack of such stars available across the sky. Many of the currently available standards are not suitable for medium and large telescopes due to their high brightness. Moreover, as we find, some of the polarimetric standards used are in fact variable or have polarization parameters that differ from their cataloged values. Aims. Our goal is to establish a sample of stable standards suitable for calibrating linear optical polarimeters with an accuracy down to 10 −3 in fractional polarization. Methods. For 4 yr, we have been running a monitoring campaign of a sample of standard candidates comprised of 107 stars distributed across the northern sky. We analyzed the variability of the linear polarization of these stars, taking into account the non-Gaussian nature of fractional polarization measurements. For a subsample of nine stars, we also performed multiband polarization measurements. Results. We created a new catalog of 65 stars (see Table 2) that are stable, have small uncertainties of measured polarimetric parameters, and can be used as calibrators of polarimeters at medium and large telescopes. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  5. We present the first Bayesian method for tomographic decomposition of the plane-of-sky orientation of the magnetic field with the use of stellar polarimetry and distance. This standalone tomographic inversion method presents an important step forward in reconstructing the magnetized interstellar medium (ISM) in three dimensions within dusty regions. We develop a model in which the polarization signal from the magnetized and dusty ISM is described by thin layers at various distances, a working assumption which should be satisfied in small-angular circular apertures. Our modeling makes it possible to infer the mean polarization (amplitude and orientation) induced by individual dusty clouds and to account for the turbulence-induced scatter in a generic way. We present a likelihood function that explicitly accounts for uncertainties in polarization and parallax. We develop a framework for reconstructing the magnetized ISM through the maximization of the log-likelihood using a nested sampling method. We test our Bayesian inversion method on mock data, representative of the high Galactic latitude sky, taking into account realistic uncertainties from Gaia and as expected for the optical polarization survey P ASIPHAE according to the currently planned observing strategy. We demonstrate that our method is effective at recovering the cloud properties as soon as the polarization induced by a cloud to its background stars is higher than ~0.1% for the adopted survey exposure time and level of systematic uncertainty. The larger the induced polarization is, the better the method’s performance, and the lower the number of required stars. Our method makes it possible to recover not only the mean polarization properties but also to characterize the intrinsic scatter, thus creating new ways to characterize ISM turbulence and the magnetic field strength. Finally, we apply our method to an existing data set of starlight polarization with known line-of-sight decomposition, demonstrating agreement with previous results and an improved quantification of uncertainties in cloud properties. 
    more » « less
  6. ABSTRACT

    The C-Band All-Sky Survey (C-BASS) has observed the Galaxy at 4.76 GHz with an angular resolution of 0${_{.}^{\circ}}$73 full-width half-maximum, and detected Galactic synchrotron emission with high signal-to-noise ratio over the entire northern sky (δ > −15○). We present the results of a spatial correlation analysis of Galactic foregrounds at mid-to-high (b > 10○) Galactic latitudes using a preliminary version of the C-BASS intensity map. We jointly fit for synchrotron, dust, and free–free components between 20 and 1000 GHz and look for differences in the Galactic synchrotron spectrum, and the emissivity of anomalous microwave emission (AME) when using either the C-BASS map or the 408-MHz all-sky map to trace synchrotron emission. We find marginal evidence for a steepening (<Δβ> = −0.06 ± 0.02) of the Galactic synchrotron spectrum at high frequencies resulting in a mean spectral index of <β> = −3.10 ± 0.02 over 4.76–22.8 GHz. Further, we find that the synchrotron emission can be well modelled by a single power law up to a few tens of GHz. Due to this, we find that the AME emissivity is not sensitive to changing the synchrotron tracer from the 408-MHz map to the 4.76-GHz map. We interpret this as strong evidence for the origin of AME being spinning dust emission.

     
    more » « less
  7. ABSTRACT Polarization measurements done using Imaging Polarimeters such as the Robotic Polarimeter are very sensitive to the presence of artefacts in images. Artefacts can range from internal reflections in a telescope to satellite trails that could contaminate an area of interest in the image. With the advent of wide-field polarimetry surveys, it is imperative to develop methods that automatically flag artefacts in images. In this paper, we implement a Convolutional Neural Network to identify the most dominant artefacts in the images. We find that our model can successfully classify sources with 98 per cent true positive and 97 per cent true negative rates. Such models, combined with transfer learning, will give us a running start in artefact elimination for near-future surveys like WALOP. 
    more » « less